Utilização de células-tronco mesenquimais no reparo de distúrbios articulares: uma revisão de literatura
DOI:
https://doi.org/10.46814/lajdv5n1-028Keywords:
célula tronco mesenquimal, lesões articulares, regeneração tecidual, sistema rigenera®, terapia celularAbstract
A regeneração dos componentes articulares configura-se como um grande desafio clínico devido aos aspectos morfofisiológicos intrínsecos aos tecidos relacionados, e a falha durante o processo reparativo pode ocasionar uma incapacidade funcional grave nas regiões afetadas. A medicina regenerativa, baseada na utilização de células-tronco mesenquimais, vem exibindo um potencial de transpor as limitações vistas em tratamentos medicamentosos e cirúrgicos disponíveis atualmente na prática veterinária. Nesta revisão, são resumidos em tópicos conhecimentos cruciais ao debate proposto, abordando as particularidades dessas células e sua aplicabilidade na medicina veterinária, bem como os atributos básicos da regeneração articular, findando numa interseção dos assuntos, a fim de esmiuçar o tratamento de distúrbios articulares em espécies de animais tratados com células-tronco mesenquimais.
References
Ameye, L. G.; Young, M. F. (2006). Animal models of osteoarthritis: lessons learned while seeking the “Holy Grail”. Current Opinion in Rheumatology, 18(5), 537–547. DOI: 10.1097/01.bor.0000240369.39713.af.
An, L., Chu;, Chu; T.; Wang, L.; An, S.; Li, Y.; Hao, H.; Zhang, Z.; Yue, H. (2021). Frequent injections of high-dose human umbilical cord mesenchymal stem cells slightly aggravate arthritis and skeletal muscle cachexia in collagen-induced arthritic mice. Experimental and Therapeutic Medicine, 22(5), 1272. https://doi.org/10.3892/etm.2021.10707
Aponte, P. M.; Caicedo, A. (2017). Stemness in Cancer: Stem Cells, Cancer Stem Cells, and their microenvironment. Stem Cells International, 2017. https://doi.org/10.1155/2017/5619472
Augello, A., Tasso, R., Negrini, S. M., Cancedda, R., & Pennesi, G. (2007). Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis and Rheumatism, 56(4), 1175–1186. https://doi.org/10.1002/art.22511
Balli, M.; Vitali, F.; Janiszewski, A.; Caluwé, E.; Cortés-Calabuig, A.; Carpentier, S.; Duelen, R.; Ronzoni, F.; Marcelis, L.; Bosisio, F. M.; Bellazzi, R.; Luttun, A.; Angelis, M. G. C.; Ceccarelli, G.; Lluis, F.; Sampaolesi, M. (2020). Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death & Differentiation, 27(5), 1520-1538. https://doi.org/10.1038/s41418-019-0433-3
Beheshtizadeh, N.; Gharibshahian, M.; Pazhouhnia, Z.; Rostami, M.; Zangi, A. R.; Maleki, R.; Azar, H. K.; Zalouli, V.; Rajavand, H.; Farzin, A.; Lotfibakhshaiesh, N.; Sefat, F.; Azami, M.; Webster, T. J.; Rezaei, N. (2022). Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomedicine & Pharmacotherapy, 153.
Berta, Á.; Duska, Z.; Tóth, F.; Hangody, L. (2015). Clinical experiences with cartilage repair techniques: outcomes, indications, contraindications and rehabilitation. Joint Diseases and Related Surgery, 26(2), 084-096. https://doi.org/10.1016/j.biopha.2022.113431
Blalock, D.; Miller, A.; Tilley, M.; Wang, J. (2015). Joint instability and osteoarthritis. Clinical Medicine Insights: arthritis and musculoskeletal disorders, 8, 15–23. DOI: 10.4137/CMAMD.S22147.
Block, T. J.; Garza, J. R. (2017). Regenerative Cells for the Management of Osteoarthritis and Joint Disorders: A Concise Literature Review. Aesthetic Surgery Journal, 37(3), 9–15. https://doi.org/10.1093/asj/sjx015
Botto, R.; Riccio, V.; Galosi, L.; Rossi, G.; Vincenzetti, S.; Tambella, A. M.; Francesco, F.; Pennasilico, L.; Riccio, M.; Salvaggio, A.; Sassaroli, S.; Piccionello, A. P. (2022). Effects of intra-articular autologous adipose micrograft for the treatment of osteoarthritis in dogs: A prospective, randomized, controlled study. Animals, 12(14), 1844. https://doi.org/10.3390/ani12141844
Cable, J.; Fuchs, E.; Weissman, I.; Jasper, H.; Glass, D.; Rando, T. A.; Blau, H.; Debnath, S.; Oliva, A.; Park, S.; Passegué, E.; Kim, C.; Krasnow, M. A. (2020). Adult stem cells and regenerative medicine-a symposium report. Annals of the New York Academy of Sciences, 1462(1), 27–36. https://doi.org/10.1111/nyas.14243
Cai, F.; Wu, X. T.; Xie, X. H.; Wang, F.; Hong, X.; Zhuang, S. Y.; Shi, R. (2015). Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits. International orthopedics, 39, 149-159. https://doi.org/10.1007/s00264-014-2481-0
Calabrese, E. J. (2022). Hormesis and embryonic stem cells. Chemico-Biological Interactions, 352. https://doi.org/10.1016/j.cbi.2021.109783
Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 217(2), 318-324. https://doi.org/10.1002/path.2469
Carvalho, A. M.; Alves, A. L. G.; Golim, M. A.; Moroz, A.; Hussni, C. A.; Oliveira, P. G. G.; Deffune, E. (2009). Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Veterinary immunology and immunopathology, 132(2-4), 303-306. https://doi.org/10.1016/j.vetimm.2009.06.014
Chailakhyan, R. K.; Kon, E.; Shekhter, A. B.; Ivannikov, S. V.; Telpukhov, V. I.; Grosheva, A. G.; Timashev, P. S. (2021). Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. International Orthopaedics, 45, 3263-3276. https://doi.org/10.1007/s00264-021-05168-1
Chen, Y.-B.; Jia, Q.-Z.; Li, D.-J.; Sun, J.-H.; Xi, S.; Liu, L.-P.; Gao, D.-X.; Jiang, D. W. (2015). Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation. International Journal of Clinical and Experimental Medicine, 8(6), 9348–9354.
Chen, X.; Wang, S.; Cao, W. (2018). Mesenchymal stem cell-mediated immunomodulation in cell therapy of neurodegenerative diseases. Cellular Immunology, 326, 8-14. https://doi.org/10.1016/j.cellimm.2017.06.006
Cheng, H.; Chen, B. P. H.; Soleas, I. M.; Ferko, N. C.; Cameron, C. G.; Hinoul, P. (2017). Prolonged operative duration increases risk of surgical site infections: a systematic review. Surgical infections, 18(6), 722-735. https://doi.org/10.1089/sur.2017.089
Clevers, H.; Loh, K. M.; Nusse, R. (2014). Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science (New York, N.Y.), 346(6205), 1248012. https://doi.org/10.1126/science.1248012
Desando, G.; Grigolo, B.; Deangelles, P. F. Á.. Teixeira, M. W., Barbagallo, F., Naro, F., Silva-Júnior, V. A.; Soares, A. F. (2021). Preclinical Evidence of Intra-Articular Autologous Cartilage Micrograft for Osteochondral Repair: Evaluation in a Rat Model. Cartilage tissue engineering, 13, 1770-1779. https://doi.org/10.1177/19476035211042408
Di Nicola, V. (2020). Degenerative osteoarthritis a reversible chronic disease. Regenerative Therapy, 15, 149–160. https://doi.org/10.1016/j.reth.2020.07.007
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Drissen, R.; Nerlov, C. (2022). 3075 – haematopoiesis is an organized process of gradual loss of lineage potentials. Experimental Hematology, 111, 82-82. https://doi.org/10.1016/j.exphem.2022.07.131
Fox, S. A. J.; Bedi, A.; Rodeo, S. A. (2009). The basic science of articular cartilage: structure, composition, and function. Sports Health, 1(6), 461–468. DOI: 10.1177/1941738109350438
Giaccone, M.; Brunetti, M.; Camandona, M.; Trovato, L.; Graziano, A. (2014). A new medical device, based on rigenera protocol, in the management of complex wounds. Journal of Stem Cells Res. Rev & Rep, 1(3), 3.
González, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis and Rheumatism, 60(4), 1006–1019. https://doi.org/10.1002/art.24405
Grady, S. T., Britton, L., Hinrichs, K., Nixon, A. J., & Watts, A. E. (2019). Persistence of fluorescent nanoparticle-labeled bone marrow mesenchymal stem cells in vitro and after intra-articular injection. Journal of Tissue Engineering and Regenerative Medicine, 13(2), 191–202. https://doi.org/10.1002/term.2781
Hooten, N. N.; Evans, M. K. (2011). The ultimate transformers: mesenchymal stem cells. Cell Cycle, 10(24), 4189–4190. https://doi.org/10.4161/cc.10.24.18490
Huang, S. X. L.; Green, M. D.; Carvalho, A. T.; Mumau, M.; Chen, Y.-W.; D’Souza, S. L.; Snoeck, H.-W. (2015). The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nature Protocols, 10(3), 413–425. https://doi.org/10.1038/nprot.2015.023
Hulse, D. A.; Jonhson, A. L. (2007). Diseases of the joints. Em: FOSSUM, T. W. (ED.). Small animal surgery. 3rd ed. 1143-1315.
Imhof, H.; Sulzbacher, I.; Grampp, S.; Czerny, C.; Youssefzadeh, S.; Kainberger, F. (2000). Subchondral bone and cartilage disease: a rediscovered functional unit. Investigative radiology, 35(10), 581-588.
Jimi, S.; Kimura, M.; De Francesco, F.; Riccio, M.; Hara, S.; Ohjimi, H. (2017). Acceleration mechanisms of skin wound healing by autologous micrograft in mice. International journal of molecular sciences, 18(8), 1675. https://doi.org/10.3390/ijms18081675
Jorgensen, C.; Noel, D.; Apparailly, F.; Sany, J. (2001). Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Annals of the Rheumatic Diseases, 60(4), 305–309. http://dx.doi.org/10.1136/ard.60.4.305
Ju, C.; Shen, Y.; Ma, G.; Liu, Y.; Cai, J.; Kim, I. M.; Tang, Y. (2018). Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. Journal of Cardiovascular Translational Research, 11, 420-428. https://doi.org/10.1007/s12265-018-9822-0
Kim, H.; Yang, G.; Park, J.; Choi, J.; Kang, E.; Lee, B. K. (2019). Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Scientific reports, 9(1). https://doi.org/10.1038/s41598-019-50435-2
Kim, S.; Kim, S.-S.; Lee, S.-H.; Eun Ahn, S.; Gwak, S.-J.; Song, J.-H.; Kim, B.-S.; Chung, H.-M. (2008). In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly (d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials, 29(8), 1043–1053. https://doi.org/10.1016/j.biomaterials.2007.11.005
Kolios, G.; Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; International Review of Thoracic Diseases, 85(1), 3–10. https://doi.org/10.1159/000345615
Kondo, M. (2010). Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors: Roles of bone marrow microenvironment. Immunological Reviews, 238(1), 37–46. https://doi.org/10.1111/j.1600-065X.2010.00963.x
Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M. (2007). Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of Bone and Joint Surgery: American Volume, 89(4), 780–785. DOI: 10.2106/JBJS.F.00222
Lee, K. B. L.; Hui, J. H. P.; Song, I. C.; Ardany, L.; Lee, E. H. (2007). Injectable mesenchymal stem cell therapy for large cartilage defects a porcine model. Stem Cells (Dayton, Ohio), 25(11), 2964–2971. https://doi.org/10.1634/stemcells.2006-0311
Lima, F. C. S.; Teixeira, M. W.; Silva Júnior, V. A.; Costa, A. B. B.; Lima, V. C.; Souza, H. C. V.; Barros, M. E. G.; Graziano, A.; Naro, F.; Soares, A. F. (2021). Avaliação da eficácia do sistema rigeneracon no tratamento de lesões de calvária em ratos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73, 132-140. https://doi.org/10.1590/1678-4162-11699
Lin, Y.-J.; Anzaghe, M.; Schülke, S. (2020). Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells (Basel, Switzerland), 9(4), 880. https://doi.org/10.3390/cells9040880
Liu, Y.; Mu, R.; Wang, S.; Long, L.; Liu, X.; Li, R.; Sun, J.; Guo, J.; Zhang, X.; Guo, J.; Yu, P.; Li, C.; Liu, X.; Huang, Z.; Wang, D.; Li, H.; Gu, Z.; Liu, B.; Li, Z. (2010). Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Research & Therapy, 12(6). https://doi.org/10.1186/ar3187
Lombello, C;. Reis, G. M .Jr.; Cohen M. (2003). Study on human chondrocyte culture viability for autologous transplantation in clinical application. Einstein, 1, 84-88.
Malda, J.; Boere, J.; Lest; C. H. A., Weeren, P. R.;Wauben, M. H. M. (2016). Extracellular vesicles — new tool for joint repair and regeneration. Nature Reviews Rheumatology, 12(4), 243–249. https://doi.org/10.1038/nrrheum.2015.170
Ma, Y.; Dong, L.; Zhou, D.; Li, L.; Zhang, W.; Zhen, Y.; Wang, X. (2019). Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. Journal of cellular and molecular medicine, 23(4), 2822-2835. https://doi.org/10.1111/jcmm.14190
Mao, F., Xu; W. R.; Qian, H.; Zhu, W.; Yan, Y.-M.; Shao, Q.-X.; Xu, H.-X. (2010). Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflammation Research, 59(3), 219–225. https://doi.org/10.1007/s00011-009-0090-y
Markoski, M. M. (2016). Advances in the use of stem cells in veterinary medicine: from basic research to clinical practice. Scientifica, 2016. https://doi.org/10.1155/2016/4516920
Martin, D. R.; Cox, N. R.; Hathcock, T. L.; Niemeyer, G. P.; Baker, H. J. (2002). Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Experimental hematology, 30(8), 879-886. https://doi.org/10.1016/S0301-472X(02)00864-0
Martini, F. H.; Timmons, M. J.; Tallitsch, R. B. (2014). Human anatomy. San Francisco, Pearson Benjamin Cummings.
Menasché, P.; Vanneaux, V.;, Hagège, A.; Bel, A.; Cholley, B.; Parouchev, A.; Cacciapuoti, I.; Al-Daccak, R.; Benhamouda, N.; Blons, H.; Agbulut, O.; Tosca, L.; Trouvin, J.-H.; Fabreguettes, J.-R.; Bellamy, V.; Charron, D.; Tartour, E.; Tachdjian, G.; Desnos, M.; Larghero, J. (2018). Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. Journal of the American College of Cardiology, 71(4), 429–438. https://doi.org/10.1016/j.jacc.2017.11.047
Mokbel, A. N.; El Tookhy, O. S.; Shamaa, A. A.; Rashed, L. A.; Sabry, D.; El Sayed, A. M. (2011). Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskeletal Disorders, 12(1), 259. https://doi.org/10.1186/1471-2474-12-259
Murphy, J. M., Fink, D. J., Hunziker, E. B., & Barry, F. P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis and Rheumatism, 48(12), 3464–3474. https://doi.org/10.1002/art.11365
Nadig, R. R. (2009). Stem cell therapy - Hype or hope? A review. Journal of Conservative Dentistry, 12(4), 131–138. https://doi.org/10.4103%2F0972-0707.58329
Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences: CMLS, 76(17), 3323–3348. https://doi.org/10.1007/s00018-019-03125-1
Nam, H. Y.; Karunanithi, P.; Loo, W. C. P.; Naveen, S. V., Chen; H. C., Hussin, P.; Kamarul, T. (2013). The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis research & therapy, 15(5), 1-13. https://doi.org/10.1186/ar4309
Niemeyer, P.; Pestka, J. M.; Kreuz, P. C.; Erggelet, C.; Schmal, H.; Suedkamp, N. P.; Steinwachs, M. (2008). Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. The American Journal of Sports Medicine, 36(11), 2091–2099. DOI: 10.1177/0363546508322131
Nolta, J. A.; Galipeau, J.; Phinney, D. G. (2020). Improving mesenchymal stem/stromal cell potency and survival: proceedings from the International Society of Cell Therapy (ISCT) MSC pre-conference held in May 2018, Palais des Congres de Montreal, Organized by the ISCT MSC Scientific Committee. Cytotherapy, 22(3), 123-126. https://doi.org/10.1016/j.jcyt.2020.01.004
Ozeki, N.; Muneta, T.; Koga, H.; Nakagawa, Y.; Mizuno, M.; Tsuji, K.; Mabuchi, Y.; Akazawa, C.; Kobayashi, E.; Matsumoto, K.; Futamura, K.; Saito, T.; Sekiya, I. (2016). Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis and cartilage, 24(6), 1061–1070. https://doi.org/10.1016/j.joca.2015.12.018
Paes, L. A. (2008). Uso de células-tronco adultas derivadas do tecido adiposo (ADSCs) para reparo de lesões ósseas: revisão de literatura. Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília, DF.
Park, S. B.; Seo, M. S.; Kim, H. S.; Kang, K. S. (2012). Isolation and characterization of canine amniotic membrane-derived multipotent stem cells, PloS One, 7(9). https://doi.org/10.1371/journal.pone.0044693
Pennasilico, L.; Di Bella, C.; Botto, R.; Murgia, E.; Riccio, V.; Piccionello, A. P. (2021). Use of micro-grafts in a chronic infected open wound after limb amputation in a cat. Veterinární medicína, 66(10), 448-455. DOI: 10.17221/197/2020-VETMED
Pernas, P. F.; Rodríguez-Lesende, I.; de la Fuente, A.; Mateos, J.; Fuentes, I.; De Toro, J.; Blanco, F. J.; Arufe, M. C. (2017). CD105+-mesenchymal stem cells migrate into osteoarthritis joint: An animal model. PloS One, 12(11), 1-16. https://doi.org/10.1371/journal.pone.0188072
Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.), 284(5411), 143–147. https://doi.org/10.1126/science.284.5411.143
Rakic, R.; Bourdon, B.; Demoor, M.; Maddens, S.; Saulnier, N.; Galéra, P. (2018). Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration. Scientific Reports, 8(1), 1-16. DOI:10.1038/s41598-018-28164-9
Ramalho, B.; de Almeida, F. M.; Sales, C. M.; De Lima, S.; Martinez, A. M. B. (2018). Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural regeneration research, 13(6), 1046. https://doi.org/10.4103%2F1673-5374.233448
Reed, S. A.; Johnson, S. E. (2012). Refinement of culture conditions for maintenance of undifferentiated equine umbilical cord blood stem cells. Journal of Equine Veterinary Science, 32(6), 360-366. https://doi.org/10.1016/j.jevs.2011.12.004
Reyes, R., Pec, M. K., Sánchez, E., del Rosario, C., Delgado, A., & Évora, C. (2013). Comparative, osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination. European Cells & Materials, 25, 351–365. DOI: 10.22203/eCM.v025a25
Reynard, L. N.; Barter, M. J. (2020). Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis and Cartilage, 28(3), 275–284. https://doi.org/10.1016/j.joca.2019.11.010
Ribitsch, I.; Chang-Rodriguez, S.; Egerbacher, M.; Gabner, S.; Gueltekin, S.; Huber, J.; Jenner, F. (2017). Sheep placenta cotyledons: a noninvasive source of ovine mesenchymal stem cells. Tissue Engineering Part C: Methods, 23(5), 298-310. https://doi.org/10.1089/ten.tec.2017.0067
Saez, D. M.; Sasaki, R. T.; da Costa Neves, A.; da Silva, M. C. P. (2016). Stem cells from human exfoliated deciduous teeth: a growing literature. Cells Tissues Organs, 202(5-6), 269-280. https://doi.org/10.1159/000447055
Sato, M., Uchida, K., Nakajima, H., Miyazaki, T., Guerrero, A. R., Watanabe, S., Roberts, S., & Baba, H. (2012). Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Research & Therapy, 14(1), 1-9. https://doi.org/10.1186/ar3735
Shen, H.; Yang, M.; Li, S.; Zhang, J.; Peng, B.; Wang, C.; Chang, Z.; Ong, J.; Du, P. (2021). Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell, 184(11), 2843-2859. https://doi.org/10.1016/j.cell.2021.04.020
Slack, J. M. (2000). Stem cells in epithelial tissues. Science, 287(5457), 1431–1433. https://doi.org/10.1126/science.287.5457.1431
Smith, A. G. (2001). Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17(1), 435–462. https://doi.org/10.1146/annurev.cellbio.17.1.435
Smith, R. K. W.; Korda, M.; Blunn, G. W.; Goodship, A. E. (2003). Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine veterinary journal, 35(1), 99-102.
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. (2008). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Obstetrical & Gynecological Survey, 63(3), 153. https://doi.org/10.1016/j.cell.2007.11.019
Tamadon, A.; Mehrabani, D.; Zarezadeh, Y.; Rahmanifar, F.; Dianatpour, M.; Zare, S. (2017). Caprine endometrial mesenchymal stromal stem cell: multilineage potential, characterization, and growth kinetics in breeding and anestrous stages. Veterinary medicine international, 2017. https://doi.org/10.1155/2017/5052801
Tao, H.; Chen, X.; Cao, H.; Zheng, L.; Li, Q.; Zhang, K.; Wang, L. (2019). Mesenchymal stem cell-derived extracellular vesicles for corneal wound repair. Stem cells international, 2019. https://doi.org/10.1155/2019/5738510
Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145
Toh, W. S.; Lee, E. H.; Guo, X.-M.; Chan, J. K. Y.; Yeow, C. H.; Choo, A. B.; Cao, T. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31(27), 6968–6980. https://doi.org/10.1016/j.biomaterials.2010.05.064
Toyoshima, A.; Yasuhara, T.; Kameda, M.; Morimoto, J.; Takeuchi, H.; Wang, F.; Sasaki, T.; Sasada, S.; Shinko, A., Wakamori, T.; Okazaki, M.; Kondo, A.; Agari, T.; Borlongan, C. V.; Date, I. (2015). Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: Analyses of therapeutic time window and its mechanisms. PloS One, 10(6), 1-17. https://doi.org/10.1371/journal.pone.0127302
Trippel, S. B.; Mankin, H. J. (1994). Articular cartilage injury and repair. Em: Siliski, J.M. (Ed). Traumatic disorders of the knee. New York: Springer Verlag, 19-36.
Trovato, L.; Monti, M.; Del Fante, C.; Cervio, M.; Lampinen, M.; Ambrosio, L.; Redi, C. A.; Perotti, C.; Kakuri, E.; Ambrosio, G.; Baena, R. R. Y.; Pirozzi, G.; Graziano, A. (2015). A new medical device rigeneracons allows to obtain viable micro‐grafts from mechanical disaggregation of human tissues. Journal of Cellular Physiology, 230(10), 2299-2303. https://doi.org/10.1002/jcp.24973
Vaish, A.; Shanmugasundaram, S.; Kim, S. A.; Lee, D. H.; Shetty, A. A.; Kim, S. J. (2022). Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis. Journal of Clinical Orthopaedics and Trauma, 24(101718). https://doi.org/10.1016/j.jcot.2021.101718
Vohra, M.; Sharma; A., Bagga; R.; Arora, S. K. (2020). Human umbilical cord-derived mesenchymal stem cells induce tissue repair and regeneration in collagen-induced arthritis in rats. Journal of Clinical and Translational Research, 6(6), 203–216. http://dx.doi.org/10.18053/jctres.06.202006.003
Zanzottera, F.; Lavezzari, E.; Trovato, L.; Icardi, A.; Graziano, A. (2014). Adipose derived stem cells and growth factors applied on hair transplantation. Follow-up of clinical outcome. Journal of Cosmetics, Dermatological Sciences and Applications, 2014. DOI:10.4236/jcdsa.2014.4403.