HPTLC method for effective separation of L-glutamic acid and GABA present in brain tissue extracts

Authors

  • Nayely Carrasco-Nuñez
  • Marisa Cabeza Salinas

DOI:

https://doi.org/10.46814/lajdv4n6-017

Keywords:

High-performance thin-layer chromatography, L-glutamate acid, ϒ-aminobutyric acid, locus coeruleous, high-resolution factor, ninhydrin, derivatizing agent

Abstract

L-glutamic acid and ϒ-aminobutyric acid (GABA) show similar physicochemical properties, so separating them by thin-layer chromatography (TLC) is difficult. TLC is currently a widely used method because of its simplicity, flexibility, and low cost compared to liquid or gas chromatography. This paper shows the TLC separation of [3H]glutamic acid from [3H]GABA formed by incubating the former with the membrane or the cytosolic fraction obtained from the locus coeruleous on the brain. Such separation was achieved with a better resolution than the literature reported. Radiolabeled compounds were extracted from the tissue and seeded on an HPTLC plate. In addition, placed the L-glutamic acid and GABA standards in different lanes. The plates were developed in a solvent system of butan-1-ol, acetic acid, and water = 5:3:2 (v:v), containing 0.4% ninhydrin as a derivatizing agent. HPTLC was used to obtain better resolving power, faster development times, less sample diffusion, and lower solvent consumption than TLC. Results showed that the L-glutamic acid and GABA standards were adequately separated, with a resolution of 2.2. Moreover, the studied tissue transformed 9% of the radiolabeled glutamate into GABA. The L-glutamic acid was converted into a fluorescent tautomer from Schiff's base, detectable on a λ=302 nm. However, when the HPTLC dried, the tautomer was identified as GABA for its Rf=0.32, and the luminescence disappeared. The resolution between both components was excellent (Rs=2.2). In conclusion, it was possible to develop a reproducible method from the data of this study, which could attract the interest of researchers.

References

Wall P. Thin-layer chromatography. A modern practical approach. The Royal Society of Chemistry, Cambridge, 2005, 183 pp.

Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Food Microbiology 2005, 22 (6), 497-504.

DOI: https://doi.org/10.1016/j.fm.2005.01.002.

Mohammad, A.; Zehra, A. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 301 (1), 404-411.

DOI: https://doi.org/10.1016/j.colsurfa.2007.01.004.

Bhushan, R.; Nagar, H. Biomed Chromatogr 2015, 29 (3), 357-365. DOI: 10.1002/bmc.3284 From NLM.

Qiu, T., Li, H., and Cao, Y. 2010. Pre-staining thin layer chromatography method for amino acid detection1. African Journal of Biotechnology, 9(50), 8679-8681. DOI: 10.5897/AJB10.817 ISSN 1684–5315

Saravana Babu, C.; Kesavanarayanan, K. S.; Kalaivani, P.; Ranju, V.; Ramanathan, M. A. Chromatography Research International 2011, 2011, 732409. DOI: 10.4061/2011/732409.

Sherma J and Fried B. Handbook of thin-layer chromatography, third ed., Chromatography Science Series, Marcel Dekker Inc. New York, 2013, 400 pp.

Báez-Pérez E, Quiñones-Gálvez J, Santiesteban-Toca C, Molina Torres J. Cuban Journal of Informatics Sciences, 2017 11 (3):92-104.

DOI: https://www.researchgate.net/deref/http%3A%2F%2Frcci.uci.cu%2F.

Aston-Jones, G.; Shipley, M. T.; Chouvet, G.; Ennis, M.; van Bockstaele, E.; Pieribone, V.; Shiekhattar, R.; Akaoka, H.; Drolet, G.; Astier, B.; et al. Prog Brain Res 1991, 88, 47-75. DOI: 10.1016/s0079-6123(08)63799-1 From NLM.

Huang, Y.; Su, L.; Wu, J. PloS one 2016, 11 (7), e0157466-e0157466. DOI: 10.1371/journal.pone.0157466 PubMed.

Bradford, M. M. Analytical Biochemistry 1976, 72 (1–2), 248-254. DOI: http://dx.doi.org/10.1016/0003-2697(76)90527-3.

Battaglioli, G.; Liu, H.; Martin, D. L. J Neurochem 2003, 86 (4), 879-887. DOI: 10.1046/j.1471-4159.2003.01910.x From NLM.

Bu, D. F.; Erlander, M. G.; Hitz, B. C.; Tillakaratne, N. J.; Kaufman, D. L.; Wagner-McPherson, C. B.; Evans, G. A.; Tobin, A. J. Proc Natl Acad Sci U S A 1992, 89 (6), 2115-2119. DOI: 10.1073/pnas.89.6.2115 From NLM.

Sancheti, J. S.; Shaikh, M. F.; Khatwani, P. F.; Kulkarni, S. R.; Sathaye, S. Development and Validation of an HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain. Indian J Pharm Sci 2013, 75 (6), 716-721. PMID: 24591747.

McCaldin, D. J. 1960. The Chemistry of Ninhydrin. Chem. Rev., 60, 1, 39–51. https://doi.org/10.1021/cr60203a004.

Fenalti, G.; Law, R. H.; Buckle, A. M.; Langendorf, C.; Tuck, K.; Rosado, C. J.; Faux, N. G.; Mahmood, K.; Hampe, C. S.; Banga, J. P.; et al. Nat Struct Mol Biol 2007, 14 (4), 280-286. DOI: 10.1038/nsmb1228 From NLM.

Babu, C. S.; Sunil, A. G.; Vasanthi, H. R.; Muthusamy, V. S.; Ramanathan, M. Development and Validation of an HPTLC Method for Simultaneous Estimation of Excitatory Neurotransmitters in Rat Brain. Journal of Liquid Chromatography & Related Technologies 2007, 30 (19), 2891-2902. DOI: 10.1080/10826070701588760.

Monge-Acuña, A. A.; Fornaguera-Trías, J. Journal of Neuroscience Methods 2009, 183 (2), 176-181. DOI: https://doi.org/10.1016/j.jneumeth.2009.06.042.

Vázquez, M. A.; Muñoz, F.; Donoso, J.; García Blanco, F. Biochem J 1991, 279 ( Pt 3) (Pt 3), 759-767. DOI: 10.1042/bj2790759.

Adrover, M.; Vilanova, B.; Muñoz, F.; Donoso, J. Bioorg Chem 2009, 37 (1), 26-32. DOI: 10.1016/j.bioorg.2008.11.002.

Miller, S. L., and Smith-McGowan. J. Phys. Chem. Ref. Data, 1990, 19(4), 1049-107321. https:// doi.org/10.1063/1.555878

Sakiyama, M., & Seki, S. Bull. Chem. Soc. 1975 48, 2203-2204. DOI: 10.33552/ICBC.2020.01.000515

Published

2022-12-07

How to Cite

CARRASCO-NUÑEZ, N.; SALINAS, M. C. HPTLC method for effective separation of L-glutamic acid and GABA present in brain tissue extracts. Latin American Journal of Development, [S. l.], v. 4, n. 6, p. 2060–2075, 2022. DOI: 10.46814/lajdv4n6-017. Disponível em: https://ojs.latinamericanpublicacoes.com.br/ojs/index.php/jdev/article/view/1215. Acesso em: 23 may. 2024.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

Most read articles by the same author(s)