Evaluation of the RegCM regional model driven by CFSv2 in intra-seasonal forecasts for the Alcântara Launch Center

Avaliação do modelo regional RegCM impulsionado pelo CFSv2 nas previsões intra-sazonais para o Centro de Lançamento de Alcântara

Authors

  • Luiz Gustavo de Oliveira
  • Cleber Souza Correa

DOI:

https://doi.org/10.46814/lajdv4n6-016

Keywords:

climate model, forecast, RegCM model, Alcantara Launch Center (CLA)

Abstract

Meteorological forecasts with a predictability window greater than 15 days, characterize the intra-seasonal forecast, which requires initial state conditions of the atmosphere and slower variability related to the temperature of the sea surface. Driving regional models by global models, it is possible to generate intra-seasonal forecasts. For the following study, we used the “regional climate model” (RegCM) nested in the global climate model “Climate Prediction System” (CFSv2) to predict temperature and the wind magnitude at 10 meters. For South America, 10 projections were made for the months of April and September. The dexterity of the model was attested by comparing it with the data from the ERA5 reanalysis model. This study evaluates the effectiveness of the model in describing the main atmospheric characteristics in force in South America, for operational purposes of the Alcântara Launch Center (CLA) in Maranhão. The evaluated scenarios were promising, where the temperature and wind intensity data showed low anomaly values for almost the entire continent. Generally, the model can prescribe well the conditions of circulation near the surface, being of great importance for the planning of launches of space vehicles.

References

Anthes, R. A. et al. (1987) Description of the Penn State/NCAR mesoscale model version 4 (MM4). Boulder, CO.: NCAR.

Chen, Mingyue; Wang, Wanqiu; Kumar, Arun. (2010) Prediction of monthly-mean temperature: The roles of atmospheric and land initial conditions and sea surface temperature. Journal of climate, v. 23, n. 3, p. 717-725. DOI: https://doi.org/10.1175/2009JCLI3090.1

Corrêa, C. S. et al. (2017) Climate Forecasts at the Centro de Lançamento de Alcântara Using the Climate Model RegCM4. Journal of Aerospace Technology and Management [online]. v. 9, n. 1 [Accessed 27 October 2021], pp. 18-28. Available from: <https://doi.org/10.5028/jatm.v9i1.649>. ISSN 2175-9146. DOI: https://doi.org/10.5028/jatm.v9i1.649

De Araújo, G. R. G.; Silva, C. M. S. E.; Da Silva, A. G. (2019) Avaliação das parametrizações cumulos Emanuel e Grell do modelo climático regional RegCM4: Simulando a precipitação e temperatura a superfície sobre o Nordeste brasileiro durante o outono austral. Anuário do Instituto de Geociências, v. 42, n. 1, p. 231-240. DOI: https://doi.org/10.11137/2019_1_231_240

De Souza, A. S.; Corrêa, C. S.; Martin, I. M.. (2021) Avaliação do modelo regional climático para a previsão de temperatura no centro de lançamento de Alcântara: Evaluation of the climate regional model for temperature forecastat the Alcântara launch center. Latin American Journal of Development, v. 3, n. 5, p. 2908-2921. doi: https://doi.org/10.46814/lajdv3n5-019 DOI: https://doi.org/10.46814/lajdv3n5-019

De Souza, E. B. et al. (2016) Sazonalidade da precipitação sobre a Amazônia Legal Brasileira: clima atual e projeções futuras usando o modelo RegCM4. Revista Brasileira de Climatologia, v. 18. DOI: https://doi.org/10.5380/abclima.v18i0.43711

Dickinson, R. E. (1993) Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note TH-387+ STR.

Dickinson, R. E. et al. (1989) A regional climate model for the western United States. Climatic change, v. 15, n. 3, p. 383-422. DOI: https://doi.org/10.1007/BF00240465

Dong, S., Yang, S., Yan, X. et al. (2020) The most predictable patterns and prediction skills of subseasonal prediction of rainfall over the Indo-Pacific regions by the NCEP Climate Forecast System. Clim Dyn 54, 2759–2775. DOI: https://doi.org/10.1007/s00382-020-05141-5

Elguindi, N. et al. (2013) Regional climate model RegCM user manual version 4.4. The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, Trieste, Italy October, v. 21, n. 2013, p. 54.

Elguindi, N. et al. (2014) Regional climate model RegCM: reference manual version 4.5. Abdus Salam ICTP, Trieste, v. 33.

Emanuel, K. A. (1991) A scheme for representing cumulus convection in large-scale models. Journal of Atmospheric Sciences, v. 48, n. 21, p. 2313-2329. DOI: https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2

Freitas, I. G. F. de et al. (2020) Downscaling Dinâmico através do Modelo RegCM para Diferentes Inicializações Utilizando Dados do CFSv2. Revista Brasileira de Meteorologia, v. 35, p. 813-821. DOI: https://doi.org/10.1590/0102-77863550008

Giorgi, F.; Bi, X.; Pal, J. S. (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dynamics, v. 22, n. 6, p. 733-756. DOI: https://doi.org/10.1007/s00382-004-0409-x

Giorgi, F.; Elguindi, N. (2013) Model RegCM User’s Guide Version 4.4 Trieste, Italy October 21.

Goodarzi, L.; Banihabib, M. E.; Roozbahani, A. (2019) A decision-making model for flood warning system based on ensemble forecasts. Journal of hydrology, v. 573, p. 207-219. DOI: https://doi.org/10.1016/j.jhydrol.2019.03.040

Grell, G. A. (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly weather review, v. 121, n. 3, p. 764-787. DOI: https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

Hersbach, H. et al. (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, v. 146, n. 730, p. 1999-2049. DOI: https://doi.org/10.1002/qj.3803

Holtslag, A. A. M.; De Bruijn, E. I. F.; Pan, H. L. (1990) A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, v. 118, n. 8, p. 1561-1575. DOI: https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

Kiehl, J. T. (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note, v. 152.

Lorenz, E. N. (1965) A study of the predictability of a 28-variable atmospheric model. Tellus, v. 17, n. 3, p. 321-333. DOI: https://doi.org/10.1111/j.2153-3490.1965.tb01424.x

Leutbecher, M.; Palmer T.N. (2008) Ensemble forecasting. Journal of Computational Physics, v. 227, I. 7, p. 3515-3539. DOI: https://doi.org/10.1016/j.jcp.2007.02.014

Phan Van, T. et al. (2014) Seasonal prediction of surface air temperature across Vietnam using the Regional Climate Model version 4.2 (RegCM4. 2). Advances in Meteorology, v. 2014. DOI: https://doi.org/10.1155/2014/245104

Queiroz, A. P. de; Corrêa, C. S.. (2015) Meteorologia Aeroespacial no Instituto de Aeronáutica e Espaço (IAE). II Fórum de Pesquisa e Inovação do CLBI, Natal.

Reboita, M. S. et al. (2018) Previsão climática sazonal para o Brasil obtida através de modelos climáticos globais e regional. Revista Brasileira de Meteorologia, v. 33, p. 207-224. DOI: https://doi.org/10.1590/0102-7786332001

Robertson, A. W. et al. (2015) Improving and promoting subseasonal to seasonal prediction. Bulletin of the American Meteorological Society, v. 96, n. 3, p. ES49-ES53. DOI: https://doi.org/10.1175/BAMS-D-14-00139.1

Saha, S. et al. (2014) The NCEP climate forecast system version 2. Journal of climate, v. 27, n. 6, p. 2185-2208. DOI: https://doi.org/10.1175/JCLI-D-12-00823.1

Sangelantoni, L.; Ferretti, R.; Redaelli, G.. (2019) Toward a regional-scale seasonal climate prediction system over central Italy based on dynamical downscaling. Climate, v. 7, n. 10, p. 120. DOI: https://doi.org/10.3390/cli7100120

Simpson, J., Kummerow, C., Tao, W.K. et al. (1996) On the Tropical Rainfall Measuring Mission (TRMM). Meteorl. Atmos. Phys. 60, 19–36. doi: https://doi.org/10.1007/BF01029783 DOI: https://doi.org/10.1007/BF01029783

Vitart, F., et al. (2017) The Subseasonal to Seasonal (S2S) Prediction Project Database, Bulletin of the American Meteorological Society, 98(1), 163-173.

Vitart, F.; Robertson, A. W. (2018) The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate and Atmospheric Science, v. 1, n. 1, p. 1-7. DOI: https://doi.org/10.1038/s41612-018-0013-0

Vogel, E. et al. (2021) Seasonal ensemble forecasts for soil moisture, evapotranspiration and runoff across Australia. Journal of Hydrology, v. 601, p. 126620. DOI: https://doi.org/10.1016/j.jhydrol.2021.126620

White, C. J. et al. (2017) Potential applications of subseasonal‐to‐seasonal (S2S) predictions. Meteorological applications, v. 24, n. 3, p. 315-325. DOI: https://doi.org/10.1002/met.1654

Zhou, X. et al. (2022) The Development of the NCEP Global Ensemble Forecast System Version 12. Weather and Forecasting. DOI: https://doi.org/10.1175/WAF-D-21-0112.1

Published

2022-12-05

How to Cite

OLIVEIRA, L. G. de; CORREA, C. S. Evaluation of the RegCM regional model driven by CFSv2 in intra-seasonal forecasts for the Alcântara Launch Center: Avaliação do modelo regional RegCM impulsionado pelo CFSv2 nas previsões intra-sazonais para o Centro de Lançamento de Alcântara. Latin American Journal of Development, [S. l.], v. 4, n. 6, p. 2047–2059, 2022. DOI: 10.46814/lajdv4n6-016. Disponível em: https://ojs.latinamericanpublicacoes.com.br/ojs/index.php/jdev/article/view/1213. Acesso em: 19 apr. 2024.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

Most read articles by the same author(s)