Nitric Oxide Production in mixed cultures of infected rats with Neospora caninum and treated with Jataí Honey (Tetragonisca angustula)

Authors

  • Ângela Cristina de Oliveira Lima
  • Luciana dos Santos Freitas
  • Carlos Alfredo Lopes de Carvalho
  • Alexandre Moraes Pinheiro

DOI:

https://doi.org/10.46919/archv4n1-016

Keywords:

neosporosis, glial cells, astrocytes, microglias, tachyzoites, immune response

Abstract

Neosporosis is a disease caused by Neospora caninum sp (JP Dubey), an intracellular parasite that affects many animal species, fostering abortions and neurological disorders. Recent studies on Neospora caninum have shown that glial cells have been considered a model of in vitro infections of these protozoa. Honey has been used since ancient times for its anti-inflammatory and antimicrobial properties. The present study aimed to evaluate the in vitro reactivity of glial cells (astrocytes and microglia) infected with N. caninum treated with Jataí honey at 1% (Tetragonisca angustula). After 72 hours from infection, mitochondrial metabolism, dehydrogenase lactate activity (LDH), nitric oxide production (NO) and the number of parasites were checked. Cultures treated with honey at 1% have shown mitochondrial metabolism and cell permeability increase. There was an increase in nitrite production, possible indicating a microglial activation. Nitric Oxide values found in this study may indicate an immune response against Neospora caninum tachyzoites, since such increase may contribute to reduce the number of tachyzoites. So, our results suggest that honey had a protective effect over astrocytes and microglia cultures infected with Neospora caninum.

References

Dubey J P, Review of Neospora caninum and neosporosis in animals, The Korean Journal of Parasitology, 41 (1) (2003) 1. DOI: https://doi.org/10.3347/kjp.2003.41.1.1

Dubey J P & Schares G, Neosporosis in animals – The last five years, Veterinary Parasitology, 180 (2011) 90. DOI: https://doi.org/10.1016/j.vetpar.2011.05.031

Dubey J P, Dorough K R, Jenkins M C, Liddell S, Speer C A, Kwok O C H & Shen S K, Canine neosporosis: clinical sings, diagnosis, treatment and isolation of Neospora caninum in mice and cell culture, International Journal for Parasitolology, 28 (1998) 1293. DOI: https://doi.org/10.1016/S0020-7519(98)00099-X

Gondim L F P, Neospora caninum in wildlife, Trends in Parasitology, 22 (6) (2006) 247. DOI: https://doi.org/10.1016/j.pt.2006.03.008

Streit W J, Walter S A & Pennell N A, Reactive microgliosis, Progress in Neurobiology, 57 (6) (1999) 563. DOI: https://doi.org/10.1016/S0301-0082(98)00069-0

Silva, A R, Pinheiro A M, Souza C S, Freitas S R V B, Vasconcellos V, Freire S M, Velozo E S, Tardy M, El-Bachá R S, Costa M F D & Costa S L, The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures, Cell Biol Toxicol, 24 (2008) 75. DOI: https://doi.org/10.1007/s10565-007-9017-y

Pinheiro A M, Costa S L, Freire S M, Almeida M A O, Tardy M, El-Bachá R & Costa M F D, Astroglial cells in primary culture: a valid model to study Neospora caninum infection in the CNS, Veterinary Immunology and Immunopathology, 113 (2006) 243. DOI: https://doi.org/10.1016/j.vetimm.2006.05.006

Pinheiro A M, Costa S L, Freire S M, Ribeiro C S O, Tardy M, El Bachá R S & Costa M F D, Neospora caninum: Early immune response of rat mixed glial cultures after tachyzoites infection, Experimental Parasitology, 124 (2010) 442. DOI: https://doi.org/10.1016/j.exppara.2009.12.018

Matos R B de, Braga-de-Souza S, Pitanga B P S, Silva V D A da, De Jesus E E V, Pinheiro A M, Costa M de F D, El-Bachá R dos S, Ribeiro C S de O & Costa S L, Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures, Korean Journal Parasitology, 52 (6) (2014) 613. DOI: https://doi.org/10.3347/kjp.2014.52.6.613

Trumbeckaite S, Dauksiene J, Bernatoniene J & Janulis V, Knowledge, Attitudes, and Usage of Apitherapy for Disease Prevention and Treatment among Undergraduate Pharmacy Students in Lithuania, Evidence-Based Complementary and Alternative Medicine, (2015) 1. DOI: https://doi.org/10.1155/2015/172502

Gonçalves A L, Alves Filho A & Menezes H, Atividade antimicrobiana do mel da abelha nativa sem ferrão Nannotrigona testaceicornis (Hymenoptera: Apidae, Meliponini) Arquivo Instituto Biológico, 72 (4) (2005) 455. DOI: https://doi.org/10.1590/1808-1657v72p4552005

Silva C L, Queiroz A J M & Figueiredo R M F, Caracterização físico-química de méis produzidos no Estado do Piauí para diferentes floradas, Campina Grande, Brasil, Revista Brasileira de Engenharia Agrícola e Ambiental, 8 (2-3) (2004) 260. DOI: https://doi.org/10.1590/S1415-43662004000200015

Mendes C G, Silva J B A da, Mesquita L X de & Maracajá P B, As análises de mel: revisão, Revista Caatinga, 22 (2) (2009) 7.

Hosny I M, El-Ghani S A & Nadir A S, Nutrient Composition and Microbiological Quality of Three Unifloral Honeys with Emphasis on Processing of Honey Probiotic Youghurt, Global Veterinaria, 3 (2) (2009) 107.

Molan P C, The antibacterial activity of honey. 1. The nature of the antibacterial activity, Bee World, 73 (1) (1992) 5. DOI: https://doi.org/10.1080/0005772X.1992.11099109

Wahdan H A L, Causes of the antimicrobial activity of honey, Infection 26 (1) (1998) 30. DOI: https://doi.org/10.1007/BF02768748

Bobany D M, Pimentel M A P, Martins R R C, Netto B E de S &Tolla M S de, Atividade antimicrobiana do mel de abelhas jataí (Tetragonisca angustula) em cultivo de microrganismos do conduto auditivo de caninos domésticos (Canis familiaris) Ci Anim Bras 11 (2) (2010) 441. DOI: https://doi.org/10.5216/cab.v11i2.4585

Sakaguchi S, Regulatory T cells: Key controllers of immunologic self-tolerance, Cell, 101 (2000) 455. DOI: https://doi.org/10.1016/S0092-8674(00)80856-9

Almasaudi S B, El-Shitany N A, Abbas A T, Abdel-dayem U A,.Ali S S, Al Jaouni S K & Harakeh S, Antioxidant, Anti-inflammatory, and Antiulcer Potential of Manuka Honey against Gastric Ulcer in Rats, Oxidative Medicine and Cellular Longevity, (2016) 1. DOI: https://doi.org/10.1155/2016/3643824

Safi S Z, Batumalaie K, Qvist R, Yusof K M & Ismail I S, Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells, Evidence-Based Complementary and Alternative Medicine, (2016), 1. DOI: https://doi.org/10.1155/2016/5843615

Ghashmm A A, Othman N H, Khattak M N, Ismail N M, Saini R, Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines, BMC Complement & Alternative Medicine, 10 (49) (2010) 1. DOI: https://doi.org/10.1186/1472-6882-10-49

Samarghandian S, Afshari J T & Davoodi S, Honey induces apoptosis in renal cell carcinoma, Pharmacognosy Magazine, 7 (25) (2011) 46. DOI: https://doi.org/10.4103/0973-1296.75901

Costa S, Planchenault T, Charriere-Bertrand C, Mouchel Y, Fages C, Juliano S, Lefrancois T, Barlovatz-Meimon G, & Tardy M, Astroglial permissivity for neuritic outgrowth in neuron–astrocyte cocultures depends on regulation of laminin bioavailability, Glia, 37 (2002) 105. DOI: https://doi.org/10.1002/glia.10015

Gondim L F P, Pinheiro A M, Santos P O M, Jesus E E V, Ribeiro M B, Fernandes H S, Almeida M A O, Freire S M, Meyer R & McAllister M M, Isolation of Neospora caninum from the brain of a naturally infected dog, and production of encysted bradyzoites in gerbils, Veterinary Parasitology, 101 (2001) 1. DOI: https://doi.org/10.1016/S0304-4017(01)00493-9

Carmichael J, De Graff W G, Gazdar A F, Minna J D &Mitchell J B, Evaluation of a Tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing, Cancer Research, 47 (1987) 936.

Won J S, Im Y B, Singh A K & Singh I, Dual role of cAMP in iNOS expression in glial cells and macrophages is mediated by diferential regulation of p38-MAPK/ATF-2 activation and iNOS stability, Free Radical Biology & Medicine, 37 (11) (2004) 1834. DOI: https://doi.org/10.1016/j.freeradbiomed.2004.08.017

Lowry O H, Rosenbroug N J, Farr A L & Randall R J, Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, 193 (1951) 265. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Banzatto D A & Kronka S do N, Experimentação agrícola, 4ª ed., (Jaboticabal, FUNEP), 2006, 237p.

Coyle J T & Schwarcz R, Mind Glue: implications of glial cell biology for psychiatry, Arch Gen Psychiatry, 57 (1) (2000) 90. DOI: https://doi.org/10.1001/archpsyc.57.1.90

Coelho P L C, Freitas S R VB de, Pitanga, B P S, Silva V D A da, Oliveira M N Grangeiro, M S, Souza C dos S, El-Bachá R dos S, Costa M de F D, Barbosa P R, Nascimento I L de O & Costa S L, Flavonoids from the Brazilian plant Croton betulaster inhibit the growth of human glioblastoma cells and induce apoptosis, Brazilian Journal of Pharmacognosy, 26 (2016) 34. DOI: https://doi.org/10.1016/j.bjp.2015.05.013

Peng L, Wang B & Ren P, Reduction of MTT by flavonoids in the absence of cells, Colloids and Surfaces B Biointerfaces, 45 (2005) 108. DOI: https://doi.org/10.1016/j.colsurfb.2005.07.014

Gonçalves J O C, Potencial modulatório do mel de Jataí (Tetragonisca angustula) em culturas de astrócitos de ratos infectadas in vitro com Neospora caninum, Dissertação, Universidade Federal do Recôncavo da Bahia, 2011.

Tuo W, Fetterer R, Jenkins M & Dubey J P, Identification and characterization of Neospora caninum Cyclophilin that elicits Gamma Interferon production, Infection and Immunity, 73 (8) (2005) 5093. DOI: https://doi.org/10.1128/IAI.73.8.5093-5100.2005

Patro N, Nagayach A & Patro I K, Iba 1 expressing microglia in the dorsal root ganglia become activated following peripheral nerve injury in rats, Indian Journal of Experimental Biology, 48 (2010) 110.

Wake H, Moorhouse A J & Nabekura J, Functions of microglia in the central nervous system – beyond the immune response, Neuron Glia Biology, 7 (1) (2011) 47. DOI: https://doi.org/10.1017/S1740925X12000063

Silva A M M, Silva A R, Pinheiro A M, Freitas S R V B, Silva V D A, Souza C S, Hughes J B, El-Bachá R S, Costa M D F, Velozo E S, Tardy M & Costa S L, Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production, Toxicon, 49 (2007) 601. DOI: https://doi.org/10.1016/j.toxicon.2006.07.037

Al-Waili N S & Boni N S, Natural honey lowers plasma prostaglandin concentrations in normal individual, Journal of Medicinal Food, 6 (2) (2003) 129. DOI: https://doi.org/10.1089/109662003322233530

Han S M, Lee K G, Yeo J H, Kweon H Y, Woo S O, Lee M L, Baek H J, Kim S Y & Park K K, Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-α production stimulated by LPS, Journal of Ethnopharmacology, 111 (2007) 176. DOI: https://doi.org/10.1016/j.jep.2006.11.008

Jaganathan S K & Mandal M, Antiproliferative effects of honey and of its polyphenols: A review, Journal of Biomedicine and Biotechnology, 83 (2009) 1. DOI: https://doi.org/10.1155/2009/830616

Alvaréz-Suarez J M, Tulipani S, Díaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S & Battino M, Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds, Food and Chemical Toxicology, 48 (2010) 2490. DOI: https://doi.org/10.1016/j.fct.2010.06.021

De Jesus E. E. V, Santos A B dos, Ribeiro C S O, Pinheiro A M, Freire S M, El-Bachá R S, Costa S L & Costa M de F D, Role of IFN-g and LPS on neuron/glial co-cultures infected by Neospora caninum, Frontiers in Cellular Neuroscience, 8 (2014) 1. DOI: https://doi.org/10.3389/fncel.2014.00340

Yamane I, Kitani H, Kokuho T, Shibahara T, Haritani M, Hamaoka T, Shimizu S, Koiwai M, Shimura K & Yokomizo Y, The inhibitory effect of interferon gamma and tumor necrosis factor alpha on intracellular multiplication of Neospora caninum in primary bovine brain cells, The Journal of Veterinary Medical Science, 62 (3) (2000) 347. DOI: https://doi.org/10.1292/jvms.62.347

Tonks A J, Cooper R A, Jones K P, Blair S, Parton J & Tonks A, Honey stimulates inflammatory cytokine production from monocytes, Cytokine, 21 (2003) 242. DOI: https://doi.org/10.1016/S1043-4666(03)00092-9

Challa S R, Akula A, Metla S & Gopal PNV, Partial role of nitric oxide in infarct size limiting effect of quercetin and rutin against ischemia-reperfusion injury in normal and diabetic rats, Indian Journal of Experimental Biology, 49 (2011) 207.

White J W & Subers M H, Studies on honey Inhibine. 2. A chemical assay, Journal of Apicultural Research, 2 (1963) 93. DOI: https://doi.org/10.1080/00218839.1963.11100066

Sabatier S, Amiot M J, Tacchini M & Aubert S, Identification of flavonoids in sunflower honey, Journal of Food Science, 57 (3) (1992) 773. DOI: https://doi.org/10.1111/j.1365-2621.1992.tb08094.x

Chan-Rodrigues D, Ramón-Sierra J, Lope-Ayora J, Sauri-Duch E, Cuevas-Glory L, Ortiz-Vázquez E, Antibacterial Properties of Honey Produced by Melipona beecheii and Apis mellifera against Foodborn Microorganisms, Food Science Biotechnology, 21 (3) (2012) 905. DOI: https://doi.org/10.1007/s10068-012-0118-x

Ortiz-Vázquez E, Cuevas-Glory L, Zapata-Baas G, Martínez-Guevara J & Ramón-Sierra J, Which bee honey components contribute to its antimicrobial activity? A review, African Journal of Microbiology Research, 7 (51) (2013) 5758. DOI: https://doi.org/10.5897/AJMR2013.5366

Gupta P, Tripathi A, Agrawal T, Narayan C, Singh B M, Kumar M & Kumar A, Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury, Indian Journal of Experimental Biology, 54 (201) 530.

Downloads

Published

2023-03-10

How to Cite

LIMA, Ângela C. de O.; FREITAS, L. dos S.; DE CARVALHO, C. A. L.; PINHEIRO, A. M. Nitric Oxide Production in mixed cultures of infected rats with Neospora caninum and treated with Jataí Honey (Tetragonisca angustula). Journal Archives of Health, [S. l.], v. 4, n. 1, p. 166–176, 2023. DOI: 10.46919/archv4n1-016. Disponível em: https://ojs.latinamericanpublicacoes.com.br/ojs/index.php/ah/article/view/1282. Acesso em: 19 may. 2024.