Brain and craniovertebral junction in patients with achondroplasia using low dose dynamic computed tomography

Authors

  • Antônio Lopes da Cunha Júnior
  • Mônica de Magalhães Machado Navarro
  • Marcos José Burle de Aguiar

DOI:

https://doi.org/10.46919/archv4n1-013

Keywords:

achondroplasia, FGFR3, spinal cord, hydrocephalus, tomography, osteochondrodysplasias

Abstract

Purpose: To describe the brain and craniovertebral junction (CVJ) in achondroplasia by dynamic low dose computed tomography (CT). Methods: This paper documents a cross-sectional retrospective study performed between 1998 and 2013. The Ethics and Research Committee approved the project. The investigators reviewed the medical records of 440 patients with skeletal dysplasia and performed flexion-extension CT for 24 patients with achondroplasia confirmed by molecular testing. They were divided in two groups: children younger than eight years old and group 2 with older individuals. Normal scans were selected as controls in proportion 1:4. Three measurements were made by two radiologists using the following parameters: Evans Ratio, cerebroventricular index of the anterior horns and maximum width of the third ventricle; diameters of the foramen magnum (FM), width of the spinal canal, clivus size, basion-axial interval, atlantooccipital interval and Powers ratio, atlantodental interval, distance of the dens tip position above McGregor line and Welcher angle. T-test, Kruskal-Wallis and Fisher statistics were used. P-value<0.05 threshold was considered for statistical significance. Results: The ventricles were greater, and the FM was smaller in achondroplastic patients than in controls scans (p<0.01). Other findings were: ventriculomegaly (30%), hydrocephalus (4%), narrowing of FM (between 96% and 100%), spinal stenosis (92%), clivus hypoplasia (88%), atlantooccipital instability (25%), atlantoaxial instability (13 %), basilar invagination (13%) and platybasia (8%). There was no upper cervical compressive myelopathy. There was no difference of CVJ changes between the groups 1 and 2 (p>0.09). Conclusion: The craniometry showed the most frequent cerebral and CVJ changes in achondroplasia.

References

White KK, Bompadre V, Goldberg MJ et al. Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy. Am J Med Genet A 2016; 170A:42–51. DOI: https://doi.org/10.1002/ajmg.a.37394

Sanders VR, Sheldon SH, Charrow J. Cervical spinal cord compression in infants with achondroplasia: should neuroimaging be routine? Genet Med 2019; 21:459–463. DOI: https://doi.org/10.1038/s41436-018-0070-0

Morgan DF, Young RF. Spinal neurological complications of achondroplasia. Results of surgical treatment. J Neurosurg. 1980;52(4):463-72. DOI: https://doi.org/10.3171/jns.1980.52.4.0463

Hunter AG, Bankier A, Rogers JG, Sillence D, Scott CI Jr. Medical complications of achondroplasia: a multicentre patient review. J Med Genet. 1998;35(9):705-12.

Smoker WR. Craniovertebral junction: normal anatomy, craniometry, and congenital anomalies. Radiographics. 1994;14(2):255-77. DOI: https://doi.org/10.1148/radiographics.14.2.8190952

Wagner MW, Poretti A, Benson JE, Huisman TA. Neuroimaging findings in pediatric genetic skeletal disorders: a review. J Neuroimaging 2017; 27:162–209. DOI: https://doi.org/10.1111/jon.12413

Pauli RM, Horton VK, Glinski LP, Reiser CA. Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. Am J Hum Genet. 1995;56(3):732-44.

Bruhl K, Stoeter P, Wietek B, Schwarz M, Humpl T, Schumacher R, et al. Cerebral spinal fluid flow, venous drainage and spinal cord compression in achondroplastic children: impact of magnetic resonance findings for decompressive surgery at the cranio-cervical junction. Eur J Pediatr. 2001;160(1):10-20. DOI: https://doi.org/10.1007/PL00008410

Lachman RS. Neurologic abnormalities in the skeletal dysplasias: a clinical and radiological perspective. Am J Med Genet. 1997;69(1):33-43. DOI: https://doi.org/10.1002/(SICI)1096-8628(19970303)69:1<33::AID-AJMG7>3.0.CO;2-U

Copley LA, Dormans JP. Cervical spine disorders in infants and children. J Am Acad Orthop Surg. 1998;6(4):204-14. DOI: https://doi.org/10.5435/00124635-199807000-00002

Van Dijk JM, Lubout CM and Brouwer PA. Cervical high-intensity intramedullary lesions without spinal cord compression in achondroplasia. J Neurosurg. 2007;6(4): 304-8. DOI: https://doi.org/10.3171/spi.2007.6.4.3

Stafira JS, Sonnad JR, Yuh WC, Huard DR, Acker RE , Nguyen DL et al.. Qualitative assessment of cervical spinal stenosis: observer variability on CT and MR images. Am J Neuroradiol. 2003;24:766–769.

R Development Core Team. R: A Language and environment for statistical computing [software na internet]. Vienna, Austria: R Foundation for Statistical Computing; 2011 [acesso em 8 fev 2014]. Disponível em: http://www.R-project.org/.

Pedersen H, Gyldensted M, Gyldensted C. Measurement of the normal ventricular system and supratentorial subarachnoid space in children with computed tomography. Neuroradiology. 1979;17(5):231-7. DOI: https://doi.org/10.1007/BF00337531

Hahn FJ, Rim K. Frontal ventricular dimensions on normal computed tomography. AJR Am J Roentgenol. 1976;126(3):593-6. DOI: https://doi.org/10.2214/ajr.126.3.593

Meese W, Kluge W, Grumme T, Hopfenmuller W. CT evaluation of the CSF spaces of healthy persons. Neuroradiology. 1980;19(3):131-6. DOI: https://doi.org/10.1007/BF00342387

Hecht JT, Nelson FW, Butler IJ, Horton WA, Scott CI Jr, Wassman ER, et al. Computerized tomography of the foramen magnum: achondroplastic values compared to normal standards. Am J Med Genet. 1985;20(2):355-60. DOI: https://doi.org/10.1002/ajmg.1320200219

Kwong Y, Rao N, Latief K. Craniometric measurements in the assessment of craniovertebral settling: are they still relevant in the age of cross-sectional imaging? AJR Am J Roentgenol. 2011;196(4):W421-5. DOI: https://doi.org/10.2214/AJR.10.5339

Rojas CA, Bertozzi JC, Martinez CR, Whitlow J. Reassessment of the craniocervical junction: normal values on CT. AJNR Am J Neuroradiol. 2007;28(9):1819-23. DOI: https://doi.org/10.3174/ajnr.A0660

Hosalkar HS, Cain EL, Horn D, Chin KR, Dormans JP, Drummond DS. Traumatic atlanto-occipital dislocation in children. J Bone Joint Surg Am. 2005;87(11):2480-8. DOI: https://doi.org/10.2106/00004623-200511000-00015

Deliganis AV, Baxter AB, Hanson JA, Fisher DJ, Cohen WA, Wilson AJ, et al. Radiologic spectrum of craniocervical distraction injuries. Radiographics. 2000;20 Spec No:S237-50. DOI: https://doi.org/10.1148/radiographics.20.suppl_1.g00oc23s237

Lustrin ES, Karakas SP, Ortiz AO, Cinnamon J, Castillo M, Vaheesan K, et al. Pediatric cervical spine: normal anatomy, variants, and trauma. Radiographics. 2003;23(3):539-60. DOI: https://doi.org/10.1148/rg.233025121

Wynn J, King TM, Gambello MJ, Waller DK, Hecht JT. Mortality in achondroplasia study: a 42-year follow-up. Am J Med Genet A. 2007;143A(21):2502-11. DOI: https://doi.org/10.1002/ajmg.a.31919

Hecht JT, Horton WA, Reid CS, Pyeritz RE, Chakraborty R. Growth of the foramen magnum in achondroplasia. Am J Med Genet. 1989 Apr;32(4):528-35. DOI: https://doi.org/10.1002/ajmg.1320320421

Aryanpur J, Hurko O, Francomano C, Wang H, Carson B. Craniocervical decompression for cervicomedullary compression in pediatric patients with achondroplasia. J Neurosurg. 1990;73(3):375-82. DOI: https://doi.org/10.3171/jns.1990.73.3.0375

Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev. 2000;21(1):23-39. DOI: https://doi.org/10.1210/edrv.21.1.0387

Mortier GR, Cohn DH, Cormier-Daire V et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A 2019; 179:2393–2419. DOI: https://doi.org/10.1002/ajmg.a.61366

Hunter AG, Bankier A, Rogers JG, Sillence D, Scott CI Jr. Medical complications of achondroplasia: a multicentre patient review. J Med Genet. 1998;35(9):705-12. DOI: https://doi.org/10.1136/jmg.35.9.705

Trotter TL, Hall JG. Health supervision for children with achondroplasia. Pediatrics. 2005;116(3):771-83. DOI: https://doi.org/10.1542/peds.2005-1440

Bellus GA, Hefferon TW, Ortiz de Luna RI, Hecht JT, Horton WA, Machado M, et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet. 1995;56(2):368-73.

Richette P, Bardin T, Stheneur C. Achondroplasia: from genotype to phenotype. Joint Bone Spine. 2008;75(2):125-30. DOI: https://doi.org/10.1016/j.jbspin.2007.06.007

Baujat G, Legeai-Mallet L, Finidori G, Cormier-Daire V, Le Merrer M. Achondroplasia. Best Pract Res Clin Rheumatol. 2008;22(1):3-18. DOI: https://doi.org/10.1016/j.berh.2007.12.008

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162-72. DOI: https://doi.org/10.1016/S0140-6736(07)61090-3

Hecht JT, Francomano CA, Horton WA, Annegers JF. Mortality in achondroplasia. Am J Hum Genet. 1987;41(3):454-64.

Downloads

Published

2023-02-23

How to Cite

DA CUNHA JÚNIOR, A. L.; NAVARRO, M. de M. M.; DE AGUIAR, M. J. B. Brain and craniovertebral junction in patients with achondroplasia using low dose dynamic computed tomography. Journal Archives of Health, [S. l.], v. 4, n. 1, p. 131–143, 2023. DOI: 10.46919/archv4n1-013. Disponível em: https://ojs.latinamericanpublicacoes.com.br/ojs/index.php/ah/article/view/1267. Acesso em: 19 may. 2024.